lower semicomplete homomorphism - translation to ρωσικά
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

lower semicomplete homomorphism - translation to ρωσικά

MORPHISM (STRUCTURE-PRESERVING MAP) BETWEEN TWO ALGEBRAIC STRUCTURES OF THE SAME TYPE
HomoMorphism; Homomorphisms; Homomorphic; E-free homomorphism; Homomorphy; Homorphic; Principal homomorphism; Surjective homomorphism; Injective homomorphism; Bijective homomorphism
  • surjective]].

lower semicomplete homomorphism      
полуполный снизу гомоморфизм
topological homomorphism         
TVS homomorphism; Topological vector space homomorphism; TVS-homomorphism

математика

топологический гомоморфизм

algebra isomorphism         
RING HOMOMORPHISM PRESERVING SCALAR MULTIPLICATION
Algebra isomorphism; Homomorphism of algebras; Algebra endomorphism; Algebra automorphism

математика

изоморфизм алгебр

Ορισμός

Homomorphy
·noun Similarity of form; resemblance in external characters, while widely different in fundamental structure; resemblance in geometric ground form. ·see Homophyly, Promorphology.

Βικιπαίδεια

Homomorphism

In algebra, a homomorphism is a structure-preserving map between two algebraic structures of the same type (such as two groups, two rings, or two vector spaces). The word homomorphism comes from the Ancient Greek language: ὁμός (homos) meaning "same" and μορφή (morphe) meaning "form" or "shape". However, the word was apparently introduced to mathematics due to a (mis)translation of German ähnlich meaning "similar" to ὁμός meaning "same". The term "homomorphism" appeared as early as 1892, when it was attributed to the German mathematician Felix Klein (1849–1925).

Homomorphisms of vector spaces are also called linear maps, and their study is the subject of linear algebra.

The concept of homomorphism has been generalized, under the name of morphism, to many other structures that either do not have an underlying set, or are not algebraic. This generalization is the starting point of category theory.

A homomorphism may also be an isomorphism, an endomorphism, an automorphism, etc. (see below). Each of those can be defined in a way that may be generalized to any class of morphisms.

Μετάφραση του &#39lower semicomplete homomorphism&#39 σε Ρωσικά